RBSP EFW LVPS 001 Rev K

RBSP EFW LVPS 001 Low Voltage Power Supply (LVPS) Specification
 Version K

Prichael 1 frollary $\begin{aligned} & \text { Michael Ludlam } \\ & \text { 2011.01.18 14:39:37-08'00' }\end{aligned}$
Michael Ludlam, U.C. Berkeley RBSP EFW Systems Engineer
Selda thequи Selda Heavner 2011.01 .18 14:33:57-08'00'
$\overline{\text { Selda Heavner, U.C. Berkeley RBSP EFW IDPU Power Engineer }}$

RBSP EFW LVPS 001 Rev K

Document Revision Record

Dev.		Description of Change	Approved By
-	Draft	-	
B	$2008-2-21$	Separate BEB supply, change floater source	
C	$2008-3-17$	Use LDO for 3.3V, 1.5V. Update backplane, Remove switching regulator option. Add 2 more switches. Change 'Turns' to 'Switch Sense' inputs	
D	$2008-7-8$	Update Voltage, Current requirements. Also top level requirements updates per new IRD	
E	$2008-8-12$	5.5V->5V, various mods	
F	$2008-9-10$	Add another analog MUX for AXB temps, spares	
G	$2008-12-29$	Update deployment currents, LVPS currents	
H	$2009-01-15$	Update +/-225V peak current for saturated preamp	
I	$2009-04-29$	Updates to LVPS frequency, power numbers and mechanical design.	
J	$2009-10-22$	Updates to PCB Commands	
K	$2011-01-01$	Clean Up	

Distribution List

Name
Keith Goetz, Project Manager, U.Min
Dorothy Gordon, UCB
Peter Berg, UCB
Michael Ludlam, UCB
Jane Hoberman, UCB
Paul Turin, UCB
Bill Donakowski, UCB

Email (thm_backplane)
goetz@umn.edu
dag@ssl.berkeley.edu
pcb@ssl.berkeley.edu
mludlam@ssl.berkeley.edu
jch@ssl.berkeley.edu
pturin@ssl.berkeley.edu
billd@ssl.berkeley.edu

TBDs

Identifier	Description

Reference Documents

Ref	Doc Number	Title
$[1]$	RBSP_EFW_SYS_004_Power	EFW Instrument Power Budget
$[2]$	RBSP_EFW_BEB_001	Boom Electronics Board Specification
$[3]$	RBSP_EFW_DFB_001	Digital Fields Board Specification
$[4]$	RBSP_EFW_DCB_001	Data Controller Board Specification
$[5]$	RBSP_EFW_PCB_001	Power Control Board Specification
$[6]$	RBSP_EFW_BPL_001	Backplane Specification
$[7]$	RBSP_EFW_BEB_001	Boom Electronics Board Specification
$[8]$	RBSP_EFW_SPB_001	SPB Specification
$[9]$	RBSP_EFW_AXB_001	AXB Specification
$[10]$	RBSP_EFW_HRN_001	Harness Specification
$[11]$	$7417-9018$	RBSP EMC Specification

RBSP EFW LVPS 001 Rev K

$[12]$	RBSP_EFW_SYS_001	EFW Requirements Matrix
$[13]$	$7417-9019$	RBSP Environmental Requirements
$[14]$	$7417-9096$	RBSP EFW Compliance Matrix
$[15]$	RBSP_EFW_BPL_001	IDPU Backplane Specification

1 Overview

The RBSP EFW IDPU Low Voltage Power Supply (LVPS) generates from the 28 Volt Spacecraft Power input the various potentials used by the RBSP EFW instrument. The regulated voltages shall be pwm regulated to $\pm 1 \%$, the voltages regulated by similarity shall be to $\pm 5 \%$. The output ripples shall be 10 mV RMS except for the $+/-225 \mathrm{~V}$ supply and floating $+/-15 \mathrm{~V}$ supplies, which shall be filtered to $14 \mu \mathrm{~V}$ RMS $10 \mathrm{~Hz}-10 \mathrm{KHz}$, and $0.4 \mu \mathrm{~V}$ RMS $10 \mathrm{KHz}-$ 100 KHz . Some voltages, as listed below, are regulated on a 'Not less than' basis. The monitor ranges shall be +/2.5 V full scale for each monitored voltage or current. Each power supply shall be current limited on its primary side. Each supply is galvanically isolated primary to secondary with no less than a total of 1 Mohm resistance between them.

The frequency of the IDPU and BEB converters shall be greater or equal to 199.5 kHz , the frequency of the Floater converters shall be 399 kHz . They all shall be synchronized to a common crystal-controlled clock generated on the DCB and provided over the backplane as an 799 kHz clock $0-5 \mathrm{~V}$ with approximately 50% duty cycle. If the synchronization signal is absent the converters shall continue to operate using an on board 799 kHz crystal oscillator, $0-5 \mathrm{~V}, 50 \%$ duty cycle.

The input from the 28 Volt Spacecraft power shall be soft started and filtered to meet EMI requirements of ref [11].

1.1 Primary Requirements

Primary EFW requirements can be found in ref[12]. Those related to the LVPS include:

ID	Req. Title	Subject	Priority	Requirement Body or Section Heading
EFW-61	EFW Power Control	Each EFW IDPU	shall	contain circuitry to open SPB and AXB doors and deploy sensors
EFW-62	EFW Low Voltage Conversion	$\begin{aligned} & \text { Each EFW } \\ & \text { IDPU } \end{aligned}$	shall	contain circuitry to provide voltages to IDPU boards using the S/C-provided 28Volts
EFW-63	EFW Main Power Allocation	Each EFW Suite	shall	not exceed the total power of 11.16 W from the EFW Main 28 V Service
EFW-64	EFW Main Power InRush	Each IDPU	shall	not exceed ICD values as follows: 10A for 100 usec; 5 A for 100 us to 1 ms 2.5A after 1 ms
EFW-65	EFW Main Power Max Voltage	Each IDPU	shall	tolerate without damage a maximum input voltage of 40 V indefinitely as defined in the ICD
EFW-75	EFW IDPU Operational Temp Range	The EFW IDPU	shall	perform as designed from -25 to +55C
EFW-78	EFW IDPU Survival Temp Range	The EFW IDPU	shall	survive without damage from -30 to $+60 \mathrm{C}$
EFW-88	EFW IDPU ICD Compliance	The EFW IDPU	shall	comply with the requirements and constraints imposed by all relevant instrument-to-spacecraft interface control documents (ICDs).
EFW-98	EFW Illegal Power States	The EFW IDPU	shall	not be damaged by the application of boom power while the Main power is Off.
EFW-99	EFW SPB Deployment Enable	The EFW IDPU	shall	not deploy SPB booms or fire SPB actuators without the SPB and Main

$\left.\begin{array}{|l|l|l|l|l|}\hline & & & & \text { power ON. } \\ \hline \text { EFW-100 } & \begin{array}{l}\text { EFW AXB Deployment } \\ \text { Enable }\end{array} & \text { The EFW IDPU } & \text { Shall } & \begin{array}{l}\text { not deploy AXB booms or fire AXB } \\ \text { actuators without the AXB and Main } \\ \text { power ON. }\end{array} \\ \hline \text { EFW-101 } & \begin{array}{l}\text { EFW Boom Pair } \\ \text { Redundancy }\end{array} & \begin{array}{l}\text { The EFW } \\ \text { IDPU }\end{array} & \text { shall } & \begin{array}{l}\text { have separate supplies for each } \\ \text { preamp boom axis }\end{array} \\ \hline \text { EFW-102 } & \text { EFW Safing by subsystem } & \begin{array}{l}\text { The EFW } \\ \text { IDPU }\end{array} & \text { shall } & \begin{array}{l}\text { continue to provide EMFISIS with } \\ \text { E-Field signals on failure of DCB } \\ \text { or DFB }\end{array} \\ \hline \text { EFW-131 } & \begin{array}{l}\text { EFW Initial Power } \\ \text { On/Reset State }\end{array} & \text { The EFW IDPU } & \text { shall } & \begin{array}{l}\text { power up in a nominal condition for } \\ \text { measuring E-Fields without processor } \\ \text { intervention. }\end{array} \\ \hline \text { EFW-133 } & \begin{array}{l}\text { EFW Compliance with } \\ \text { EM Environment Control } \\ \text { Plan }\end{array} & \text { The EFW Suite } & \text { shall } & \begin{array}{l}\text { comply with the requirements and } \\ \text { constraints imposed by the RBSP } \\ \text { Electromagnetic Environment Control } \\ \text { Plan, APL document no. 7417-9018. }\end{array} \\ \hline \text { EFW-136 } & \begin{array}{l}\text { Instrument Compliance } \\ \text { with Environmental } \\ \text { Design and Test } \\ \text { Requirements Document }\end{array} & \text { Each EFW } & \text { Instrument } & \text { shall }\end{array} \begin{array}{l}\text { comply with the requirements and } \\ \text { constraints imposed by the RBSP } \\ \text { Environmental Design and Test } \\ \text { Requirements Document, APL } \\ \text { document no. 7417-9019. }\end{array}\right]$

2 Specific Output Voltage Requirements

The following section details the output voltages and the characteristics of the supply. Figure 2.1 shows the voltages and nominal current requirements of the EFW system as detailed in reference [1] (refer to reference 1 for the most recent values). The LVPS shall be capable of generating peak current consumption on each supply. At power levels above the peak indicated the supply should limit. The LVPS shall produce these voltages under all environmental conditions and maintain at least a 60% efficiency ratio at average current consumption (except 225 V supply, which shall have at least 25% efficiency). Power numbers for each supply (along the bottom) are on the secondary). Power numbers on the right are on the primary (including the LVPS efficiency factors).

Calc by Voltage	Voltages																		
Pwr	+5V D	+1.8V D	+3.6D (1)	+5V A	-5V A	+10VA	-10VA	+5V D	+10V A	-10V A	+225V	-225V	+/-15F1	+/-15F2	+/-15F3	+/-15F4	+1-10F5	+/-15F6	
	IDPU							BEB											
10.329	$\begin{array}{r} 5 \\ 0.010 \\ 0.05 \end{array}$	1.80.4400.79	$\begin{array}{r} \hline 3.6 \\ 0.238 \\ 0.86 \\ \hline \end{array}$	50.0680.34	50.0810.41	100.0420.42	100.0360.36	50.0030.02	100.0550.55	100.0500.50	225 0.0013 0.29	225 0.0003 0.07	$\begin{array}{r} 30 \\ 0.006 \\ 0.17 \\ \hline \end{array}$	300.0060.17	$\begin{array}{r} \hline 30 \\ 0.006 \\ 0.17 \\ \hline \end{array}$	$\begin{array}{r} \hline 30 \\ 0.006 \\ 0.17 \\ \hline \end{array}$	300.0060.17	$\begin{array}{\|r\|} \hline 30 \\ 0.006 \\ 0.17 \\ \hline \end{array}$	VOLTAGES CURRENT POWER
Avg																			
16.974	$\begin{array}{r} 5 \\ 0.018 \\ 0.09 \\ \hline \end{array}$	$\begin{array}{r} 1.8 \\ 0.753 \\ 1.36 \\ \hline \end{array}$	$\begin{array}{r} 3.6 \\ 0.556 \\ 2.00 \\ \hline \end{array}$	$\begin{array}{\|r} 5 \\ 0.102 \\ 0.51 \end{array}$	$\begin{array}{r} 5 \\ 0.121 \\ 0.60 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 10 \\ 0.077 \\ 0.77 \end{array}$	100.0580.58	$\begin{array}{\|r\|} \hline 5 \\ 0.005 \\ 0.02 \end{array}$	$\begin{array}{\|r\|} \hline 10 \\ 0.055 \\ 0.55 \\ \hline \end{array}$	$\begin{array}{\|r} 10 \\ 0.053 \\ 0.53 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 225 \\ 0.0056 \\ 1.25 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 225 \\ 0.0056 \\ 1.25 \\ \hline \end{array}$	$\begin{array}{r} 30 \\ 0.009 \\ 0.28 \end{array}$	30 0.009 0.28	$\begin{array}{r} 30 \\ 0.009 \\ 0.28 \end{array}$	$\begin{array}{\|r\|} \hline 30 \\ 0.009 \\ 0.28 \\ \hline \end{array}$	$\begin{array}{r} 30 \\ 0.009 \\ 0.28 \\ \hline \end{array}$	300.0090.28	VOLTAGES CURRENT POWER
Peak																			

Figure 2.1. Power Supply Voltage and Currents (From RBSP_EFW_SYS_004J)

2.1 IDPU POWER

Upon application of 28 VDC to the input pins, the LVPS shall provide $+1.8 \mathrm{VD},+3.6 \mathrm{VD},+5 \mathrm{VD}, \pm 5 \mathrm{VA}, \pm 10 \mathrm{VA}$ to run the DCB, DFB, and PCB cards. The input current shall be limited and monitored and reported to the DCB. The +5 VD , and +5 VA will be regulated; the other voltages will be regulated by similarity..

The +1.5 VD and +3.3 VD required by the DCB and DFB are generated from +1.8 VD and +3.6 VD (not less than 1.8 V and 3.6 V at peak current, worst case conditions) supplies on the DCB and DFB cards using MS Kennedy LDO linear regulators. The LDOs will be located on the DCB and DFB boards. Current consumption on those boards is:

Board Currents	3.3V Average	3.3V Peak	1.5V Average	1.5V Peak
DCB	169 mA	391 mA	250 mA	373 mA
DFB	60 mA	118 mA	190 mA	380 mA

Figure 2-3 Remote Switching Regulator Requirements

2.2 BEB POWER

The LVPS shall provide +5 Volts Digital, ± 10 Volts, and ± 225 Volts to be used by the BEB board. The input current shall be limited and monitored and reported to the DCB. The +5 V analog supply is regulated and supplies power to the floating voltage supplies; the other analog voltages will be regulated by similarity. The +5 Volt Digital supply is used on the BEB to run digital logic and as the load is low the supply can be made from an LDO regulator if necessary. The BEB supply shall continue to operate nominally even if the IDPU Power supply fails. The +/-225 V supply is separate from the $+/-10 \mathrm{~V}$ supply.

The peak load on the $+/-225 \mathrm{~V}$ supply results from a capacitive load driven by an amplifier powered by the $+/-225 \mathrm{~V}$ supply. The worst case load takes 5.6 mA peak on either supply at 100 Hz . The cycle-averaged current on each supply is significantly lower, so power supply filtering can reduce this load if it can level the load at 100 Hz .

2.3 Floating Voltages

The LVPS shall provide for the fields instrument three pairs of ± 15 Volt sets, each set of ± 15 with its separate return. Each pair shall be current monitored. Floating ground can be biased between $+/-225 \mathrm{~V}$ on the BEB board. These voltages are derived from a BEB secondary voltage. The Floating Voltages shall continue to operate nominally even if the IDPU Power supplies fail.

The 225V supply should be proceeded by the floating supplies.

3 Block Diagram

Figure 3.1 shows an overview of the main components comprising the LVPS and the PCB. The LVPS resides on a 6 U VME board. It connects to the backplane via a Hypertronics 80-pin connector mounted edgewise, facing upwards. Power is distributed through the backplane connection, but received from the spacecraft via a front panel male D connector. Another front panel connector takes switched deployment power and returned status signals to the boom units. The PCB is housed on the same board as the LVPS.

Figure 3.1: LVPS and PCB Block Diagram

The nominal PCB logic schematic is shown in figure 3.2

Figure 3.2 PCB Logic; switch and analog multiplexer control

4 Commands

The LVPS receives digital commands from the DCB via the backplane. These commands are shifted in serially and latched in parallel. The DCB shall provide PCB_CMD, PCB_CLK, and PCB_STB signals. These signals are received by inverting buffers with hysteresis (54AC14) and a pull-down resistor. Their idle state should be low. Data is shifted in on the falling edge of PCB_CLK, with PCB_CMD being shifted into Bit 0 , Bit 0 shifting into Bit 1, etc. Eight data bits are shifted in. Data is transferred from the shift register to the control latch on the falling edge of PCB_STB (which should be a positive-going pulse) after the data is shifted in. There are two latches - one controls the power switches and one the analog housekeeping MUX. The state of the MSB of the data word selects which word is latched; the other latch is not affected. If the MSB is zero, the Analog Housekeeping MUX is set. If the state is one, the switch register is set. When one register is set the state of the other register is not affected.

The registers shall default to zero on power on.

4.1 Power Switch Register

The power switch register controls which of the power switches is enabled. Table 4.1 lists the command words associated with the various switch combinations. Following the receipt of the commands listed below only the indicated services will be powered.

RBSP EFW LVPS 001 Rev K

Command	Switch Name	Switch Function	Peak Current, Amps
0x80	IDLE	No switch actuated (power-on default)	0
0xC0	M1M2	SPB Units 1 and 2 Motors ON	3.0
0xC1	M3M4	SPB Units 3 and 4 Motors ON	3.0
0xC2	M5M6	AXB Units 1 and 2 Motors ON	1.0
0x D0	M1	SPB Unit 1 Motor ON	1.5
0x C8	M2	SPB Unit 2 Motor ON	1.5
0x D1	M3	SPB Unit 3 Motor ON	1.5
0x C9	M4	SPB Unit 4 Motor ON	1.5
0x D2	M5	AXB Unit 1 Motor ON	1.5
0x CA	M6	AXB Unit 2 Motor ON	1.9
0x D4	D1	SPB Unit 1 Door Actuator ON	1.9
0x CC	D2	SPB Unit 2 Door Actuator ON	1.9
0x D5	D3	SPB Unit 3 Door Actuator ON	1.9
0x CD	D4	SPB Unit 4 Door Actuator ON	1.2
0x D6	D5	AXB Unit 1 Sphere Release Actuator ON	1.2
0x CE	D6	AXB Unit 2 Sphere Release Actuator ON	1.2
0x CB	S5	AXB Unit 1 Stacer Release Actuator ON	1.2
0x CF	S6	AXB Unit 2 Stacer Release Actuator ON	2.3
0x D3	BS	AXB Unit 1 and 2 Stacer Release Actuators ON (Backup)	2.3
0x D7	BD	AXB Unit 1 and 2 Sphere Release Actuators ON (Backup)	
Tabe 41 PCB Swith C			

Table 4.1 PCB Switch Commands

5 Analog Housekeeping

Table 5.1 provides the Analog HKP on the PCB. All outputs shall be scaled to be between -2.5 V and +2.5 V . No offset need be applied - a monitor value of zero shall typically be zero after scaling.

Command	HKP Channel $\#$	HK Name	
0	-	Ground	No Fhannel selected (power-on default)
0×00	AHKP0	IMON_IDPU	IDPU ANALOG AND DIGITAL PRIMARY CURRENTS
0×08	Ax09	AHKP1	IMON_BEB

0×17	AHKP15	VMON_IDPU_P1.8VD	IDPU +1.8 VD VOLTAGE MONITOR
0×20	AHKP16	TMON_LVPS	LVPS Temperature Monitor
0×21	AHKP17	SPARE	
0×22	AHKP18	STATE1	SPB1 Deployment Switch Status
0×23	AHKP19	STATE2	SPB2 Deployment Switch Status
0×24	AHKP20	STATE3	SPB3 Deployment Switch Status
0×25	AHKP21	STATE4	SPB4 Deployment Switch Status
0×26	AHKP22	STATE5	AXB5 Deployment Switch Status
0×27	AHKP23	STATE6	AXB6 Deployment Switch Status
0×40	AHKP24	SPARE	
0×41	AHKP25	SPARE	
0×42	AHKP26	SPARE	
0×43	AHKP27	SPARE	
0×44	AHKP28	TMON_AXB5	AXB5 temperature monitor
0×45	AHKP29	TMON_AXB6	AXB6 temperature monitor
0×46	AHKP30	SPARE	
0×47	AHKP31	SPARE	

Table 5.1. Analog Housekeeping Returned by LVPS/PCB
The STATE signals shall each be pulled up to a 2.5 V reference signal via $6.04 \mathrm{Kohm} 0.1 \%$ resistor on the PCB. They are pulled to ground by switches to be monitored in the boom units via different resistor values such that the value of the STATE analog housekeeping measurement tells the system which switches are closed.

The TMON_LVPS, TMON_AXB5, and TMON_AXB6 signals are generated by a YSI thermistor, pulled up to the 2.5 V reference by a 10 k resistor.

6 LVPS Connectors

The LVPS/PCB is housed in the bottom of the IDPU and connected to the other IDPU boards by a single backplane KA80.1-pin connector The connector to the SC Spacecraft is fitted onto the front panel. The input connector is a 311P409-1P-B-12, the output connector is a Hypertronics KA80.1/127CPFC10TABH. The connector pinout is specified in RBSP_EFW_BPL_001. Note that some of the spare signals are terminated in the LVPS, as indicated in that document. The boom deployment and boom status signals leave the board on a HD62S connector (311P407-2S-B-12) also housed on the front panel.

7 Packaging

The LVPS will conform to the dimensions as shown in the following figures, more detail can be found in RBSP-IDP-MEC-002.

